Integrable Systems with Pairwise Interactions and Functional Equations
نویسنده
چکیده
A new ansatz is presented for a Lax pair describing systems of particles on the line interacting via (possibly nonsymmetric) pairwise forces. Particular cases of this yield the known Lax pairs for the Calogero-Moser and Toda systems, as well as their relativistic generalisations. The ansatz leads to a system of functional equations. Several new functional equations are described and the general analytic solution to some of these is given. New integrable systems are described.
منابع مشابه
Relationships between Darboux Integrability and Limit Cycles for a Class of Able Equations
We consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmPxyPxyPxy++++2(,)(,)(,)nnmnmyQxyQxyQxy++&=++. For where and are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditions we proved such Darboux integrable systems can have at most 1 limit cycle.
متن کاملKinetic equation for a dense soliton gas.
We propose a general method to derive kinetic equations for dense soliton gases in physical systems described by integrable nonlinear wave equations. The kinetic equation describes evolution of the spectral distribution function of solitons due to soliton-soliton collisions. Owing to complete integrability of the soliton equations, only pairwise soliton interactions contribute to the solution, ...
متن کاملSolutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation
Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...
متن کاملA numerical investigation of a reaction-diffusion equation arises from an ecological phenomenon
This paper deals with the numerical solution of a class of reaction diffusion equations arises from ecological phenomena. When two species are introduced into unoccupied habitat, they can spread across the environment as two travelling waves with the wave of the faster reproducer moving ahead of the slower.The mathematical modelling of invasions of species in more complex settings that include ...
متن کاملInternal Modes of Solitons and Near-Integrable Highly-Dispersive Nonlinear Systems
The transition from integrable to non-integrable highly-dispersive nonlinear models is investigated. The sine-Gordon and φ-equations with the additional fourth-order spatial and spatio-temporal derivatives, describing the higher dispersion, and with the terms originated from nonlinear interactions are studied. The exact static and moving topological kinks and soliton-complex solutions are obtai...
متن کامل